This natural preference for one side versus the other is called handedness, and can be seen almost everywhere - from a glucose molecule whose atomic structure leans left, to a dog who shakes "hands" only with her right.

Now a team of researchers led by Berkeley Lab has observed chirality for the first time in polar skyrmions - quasiparticles akin to tiny magnetic swirls - in a material with reversible electrical properties.

"What we discovered is just mind-boggling," said Ramamoorthy Ramesh, who holds appointments as a faculty senior scientist in Berkeley Lab's Materials Sciences Division and as the Purnendu Chatterjee Endowed Chair in Energy Technologies in Materials Science and Engineering and Physics at UC Berkeley.

When the team of researchers - co-led by Ramesh and Lane Martin, a staff scientist in Berkeley Lab's Materials Sciences Division and a professor in Materials Science and Engineering at UC Berkeley - began this study in 2016, they had set out to find ways to control how heat moves through materials.

So they fabricated a special crystal structure called a superlattice from alternating layers of lead titanate (an electrically polar material, whereby one end is positively charged and the opposite end is negatively charged) and strontium titanate (an insulator, or a material that doesn't conduct electric current).

But once they took STEM (scanning transmission electron microscopy) measurements of the lead titanate/strontium titanate superlattice at the Molecular Foundry, a U.S. DOE Office of Science User Facility at Berkeley Lab that specializes in nanoscale science, they saw something strange that had nothing to do with heat: Bubble-like formations had cropped up all across the device.

The text above is a summary, you can read full article here.