Physicists from Nanyang Technological University, Singapore (NTU Singapore) and the Niels Bohr Institute in Copenhagen, Denmark, have devised a method to turn a non-magnetic metal into a magnet using laser light.

Magnets and their magnetic field are typically produced by circulating currents, like those found in everyday electromagnetic coils.

The scientists theorise that when non-magnetic metallic disks are illuminated by linearly polarised light - light that does not possess any handedness of its own - circulating electric currents and hence magnetism can spontaneously emerge in the disk.

The new theory by Assistant Professor Justin Song from NTU's School of Physical and Mathematical Sciences and Associate Professor Mark Rudner from Niels Bohr Institute, was published in the scientific journal Nature Physics earlier this month.

Prof Song said that their scheme is an example of how novel strong light-matter interactions could be used to create material properties "on-demand".

If realised experimentally, this would open up a wide variety of potential applications across a range of high quality plasmonic materials such as graphene.

The text above is a summary, you can read full article here.